Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.677
Filtrar
1.
Dalton Trans ; 53(10): 4526-4543, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38348686

RESUMO

A library of homoleptic mononuclear Ga(III) complexes of the general formula [Ga(DTC)3], where DTC is an alicyclic or a linear dithiocarbamate chelator, is reported. The complexes were prepared in high yields starting from Ga(NO3)3·6H2O and fully characterized by elemental analysis and IR and NMR spectroscopy. Crystals of five of these complexes were obtained. The antitumor activity of the newly synthesized compounds against a panel of human cancer cell lines was evaluated. The chemical nature of the DTC does not have a marked impact on the structural features of the final compound. X-ray crystal structure analyses revealed that all these complexes have a trigonal prismatic geometry with three identical chelating DTCs coordinating the Ga(III) ion. It is noteworthy that in complex 22, [Ga(NHEt)3] (NHEt = N-ethyldithiocarbamate), the asymmetric unit is formed by two independent and structurally different molecules. Cellular studies showed that all the synthesized Ga-DTC complexes exhibit marked cytotoxic activity, even against human colon cancer cells that are less sensitive to cisplatin. Among the tested compounds, 6 ([Ga(CEPipDTC)3], CEPipDTC = (ethoxycarbonyl)-piperidinedithiocarbamate) and 21 ([Ga(Pr-13)3], PR13 = 4 and N-(2-ethoxy-2-oxoethyl)-N-methyldithiocarbamate) are very promising derivatives, but they have no selectivity towards cancer cells. Nevertheless, the obtained data provide a foundation for developing gallium-dithiocarbamate complexes as anticancer agents.


Assuntos
Antineoplásicos , Complexos de Coordenação , Gálio , Neoplasias , Humanos , Gálio/farmacologia , Gálio/química , Antineoplásicos/química , Cisplatino , Quelantes/química , Complexos de Coordenação/química , Linhagem Celular Tumoral
2.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276575

RESUMO

The aim of this work is to explore a new library of coordination compounds for medicinal applications. Gallium is known for its various applications in this field. Presently, indium is not particularly important in medicine, but it shares a lot of chemical traits with its above-mentioned lighter companion, gallium, and is also used in radio imaging. These metals are combined with thiosemicarbazones, ligating compounds increasingly known for their biological and pharmaceutical applications. In particular, the few ligands chosen to interact with these hard metal ions share the ideal affinity for a high charge density. Therefore, in this work we describe the synthesis and the characterization of the resulting coordination compounds. The yields of the reactions vary from a minimum of 21% to a maximum of 82%, using a fast and easy procedure. Nuclear Magnetic Resonance (NMR) and Infra Red (IR) spectroscopy, mass spectrometry, elemental analysis, and X-ray Diffraction (XRD) confirm the formation of stable compounds in all cases and a ligand-to-metal 2:1 stoichiometry with both cations. In addition, we further investigated their chemical and biological characteristics, via UV-visible titrations, stability tests, and cytotoxicity and antibiotic assays. The results confirm a strong stability in all explored conditions, which suggests that these compounds are more suitable for radio imaging applications rather than for antitumoral or antimicrobic ones.


Assuntos
Complexos de Coordenação , Gálio , Tiossemicarbazonas , Gálio/farmacologia , Gálio/química , Índio/química , Tiossemicarbazonas/química , Ligantes , Espectroscopia de Ressonância Magnética , Complexos de Coordenação/química
3.
Int J Biol Macromol ; 258(Pt 1): 128838, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128798

RESUMO

Pseudomonas aeruginosa is one of the leading causes of opportunistic infections such as chronic wound infection that could lead to multiple organ failure and death. Gallium (Ga3+) ions are known to inhibit P. aeruginosa growth and biofilm formation but require carrier for localized controlled delivery. Lactoferrin (LTf), a two-lobed protein, can deliver Ga3+ at sites of infection. This study aimed to develop a Ga-LTf complex for the treatment of wound infection. The characterisation of the Ga-LTf complex was conducted using differential scanning calorimetry (DSC), Infra-Red (FTIR) and Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES). The antibacterial activity was assessed by agar disc diffusion, liquid broth and biofilm inhibition assays using the colony forming units (CFUs). The healing capacity and biocompatibility were evaluated using a P.aeruginosa infected wound in a rat model. DSC analyses showed thermal transition consistent with apo-lactoferrin; FTIR confirmed the complexation of gallium to lactoferrin. ICP-OES confirmed the controlled local delivery of Ga3+. Ga-LTf showed a 0.57 log10 CFUs reduction at 24 h compared with untreated control in planktonic liquid broth assay. Ga-LTf showed the highest antibiofilm activity with a 2.24 log10 CFUs reduction at 24 h. Furthermore, Ga-LTf complex is biocompatible without any adverse effect on brain, kidney, liver and spleen of rats tested in this study. Ga-LTf can be potentially promising novel therapeutic agent to treat pathogenic bacterial infections.


Assuntos
Gálio , Ratos , Animais , Gálio/química , Gálio/metabolismo , Gálio/farmacologia , Pseudomonas aeruginosa , Lactoferrina/metabolismo , Antibacterianos/farmacologia , Biofilmes
4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003515

RESUMO

The crystal structure determination of metal complexes of curcuminoids is a relevant topic to assess their unequivocal molecular structure. We report herein the first two X-ray crystal structures of homoleptic metal complexes of a curcuminoid, namely Dimethoxycurcumin (DiMeOC), with gallium and indium. Such successful achievement can be attributed to the suppression of interactions from the phenolic groups, which favor an appropriate molecular setup, rendering Dimethoxycurcumin gallium ((DiMeOC)2-Ga) and Dimethoxycurcumin indium ((DiMeOC)3-In) crystals. Surprisingly, the conformation of ligands in the crystal structures shows differences in each metal complex. Thus, the ligands in the (DiMeOC)2-Ga complex show two different conformers in the two molecules of the asymmetric unit. However, the ligands in the (DiMeOC)3-In complex exhibit three different conformations within the same molecule of the asymmetric unit, constituting the first such case described for an ML3 complex. The cytotoxic activity of the (DiMeOC)2-Ga complex is 4-fold higher than cisplatin against the K562 cell line and has comparable activity towards U251 and PC-3 cell lines. Interestingly, this complex exhibit three times lesser toxicity than cisplatin and even slightly lesser cytotoxicity than curcumin itself.


Assuntos
Antineoplásicos , Complexos de Coordenação , Gálio , Gálio/farmacologia , Gálio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Cisplatino , Índio/química , Diarileptanoides , Linhagem Celular Tumoral , Ligantes , Antineoplásicos/farmacologia
5.
Dalton Trans ; 52(43): 15848-15858, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37828871

RESUMO

Six (G1-G6) novel organogallium complexes of the general formula [Ga(R)2quin] (where R = Et, iPr, nBu, tBu, sBu and hexyl; quin = quinolin-8-olate, C9H6NO) have been synthesised and fully characterised. Single crystal X-ray diffraction shows the complexes adopt a five-coordinate geometry through dimerisation. Complexes G1-G5 were analytically pure and could undergo further biological analysis. [Ga(hex)2quin] G6 could not be satisfactorily purified and was excluded from biological assays. 1H NMR spectroscopy indicated the complexes are stable to hydrolysis over 24 hours in 'wet' d6-DMSO. Complexes G1-G5 were assessed for their anti-leishmanial activity towards three separate strains: L. major, L. amazonensis and L. donovani, with varied results toward the promastigote form. G1 and G2 were found to be the most selective with little to no toxicity towards mammalian cell lines. Amastigote invasion assays on the three strains showed that [Ga(nBu)2quin] G3 and [Ga(tBu)2quin] G4 gave the best all round anti-parasitic activity with percentage infection ranges of 1.50-3.00% and 3.25-7.50% respectively, with G3 out-performing the drug control amphotericin B in all three assays. The activity was found to correlate with lipophilicity and water solubility, with the most effective G3 proving the most lipophilic and least water soluble.


Assuntos
Gálio , Leishmania , Animais , Gálio/química , Cristalografia por Raios X , Linhagem Celular , Água , Mamíferos
6.
J Inorg Biochem ; 249: 112371, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738699

RESUMO

A series of dimethylgallium quinolinolate [GaMe2L] (L = 5-chloroquinolinolate, 5, 7-dichloroquinolinolate, 5, 7-dibromoquinolinolate or 5, 7-doiodoquinolinolate) complexes, shown previously to be active toward the Leishmania parasite, have been studied for their antibacterial activity toward a reference and drug resistant strain of Klebsiella pneumoniae (KP). The assays were conducted in standard iron-rich LB media and in the iron depleted RPMI and RPMI-HS media to better understand the effect of Fe concentration on the activity of the Ga complexes. In LB broth the parent quinolinols and the gallium complexes were inactive up to the highest concentration tested, 100 µM. In the more physiologically relevant 'iron-poor' RPMI-HS media the quinolonols remained inactive, however, the gallium complexes showed exceptional activity in the range 48-195 nM. Only in RPMI without any added HS did both the quinolinols and the gallium complexes show good activity. The significant differences in activity across the various media types suggest that the unnaturally high iron content of conventional LB media may provide false negative results for potentially potent Ga therapeutics. A protein binding assay on the organometallic gallium complexes showed a much slower uptake of Ga by Fe-binding proteins than is typically observed for gallium salts. This indicates that their greater lipophilicity and greater hydrolytic stability could account for their increased biological activity in RPMI-HS media.


Assuntos
Gálio , Hidroxiquinolinas , Gálio/farmacologia , Gálio/química , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/química , Ferro/metabolismo , Hidroxiquinolinas/farmacologia
7.
J Environ Manage ; 347: 119043, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776794

RESUMO

Advanced high-tech applications for communication, renewable energy, and display, heavily rely on technology critical elements (TCEs) such as indium, gallium, and germanium. Ensuring their sustainable supply is a pressing concern due to their high economic value and supply risks in the European Union. Recovering these elements from end-of-life (EoL) products (electronic waste: e-waste) offers a potential solution to address TCEs shortages. The review highlights recent advances in pre-treatment and hydrometallurgical and biohydrometallurgical methods for indium, gallium, and germanium recovery from EoL products, including spent liquid crystal displays (LCDs), light emitting diodes (LEDs), photovoltaics (PVs), and optical fibers (OFs). Leaching methods, including strong mineral and organic acids, and bioleaching, achieve over 95% indium recovery from spent LCDs. Recovery methods emphasize solvent extraction, chemical precipitation, and cementation. However, challenges persist in separating indium from other non-target elements like Al, Fe, Zn, and Sn. Promising purification involves solid-phase extraction, electrochemical separation, and supercritical fluid extraction. Gallium recovery from spent GaN and GaAs LEDs achieves 99% yield via leaching with HCl after annealing and HNO3, respectively. Sustainable gallium purification techniques include solvent extraction, ionic liquid extraction, and nanofiltration. Indium and gallium recovery from spent CIGS PVs achieves over 90% extraction yields via H2SO4 with citric acid-H2O2 and alkali. Although bioleaching is slower than chemical leaching (several days versus several hours), indirect bioleaching shows potential, achieving 70% gallium extraction yield. Solvent extraction and electrolysis exhibit promise for pure gallium recovery. HF or alkali roasting leaches germanium with a high yield of 98% from spent OFs. Solvent extraction achieves over 90% germanium recovery with minimal silicon co-extraction. Solid-phase extraction offers selective germanium recovery. Advancements in optimizing and implementing these e-waste recovery protocols will enhance the circularity of these TCEs.


Assuntos
Resíduo Eletrônico , Gálio , Germânio , Resíduo Eletrônico/análise , Índio/química , Peróxido de Hidrogênio , Reciclagem/métodos , Tecnologia , Gálio/química , Solventes , Álcalis
8.
J Proteomics ; 289: 105011, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776994

RESUMO

Gallium has a long history as a chemotherapeutic agent. The mechanisms of action of Ga(III)-based anti-infectives are different from conventional antibiotics, which primarily result from the chemical similarities of Ga(III) with Fe(III) and substitution of gallium into iron-dependent biological pathways. However, more aspects of the molecular mechanisms of Ga(III) against human pathogens, especially the effects on bacterial metabolic processes, remain to be understood. Herein, by using conventional quantitative proteomics, we identified the protein changes of Pseudomonas aeruginosa (P. aeruginosa) in response to Ga(NO3)3 treatment. We show that Ga(III) exhibits bacteriostatic mode of action against P. aeruginosa through affecting the expressions of a number of key enzymes in the main metabolic pathways, including glycolysis, TCA cycle, amino acid metabolism, and protein and nucleic acid biosynthesis. In addition, decreased expressions of proteins associated with pathogenesis and virulence of P. aeruginosa were also identified. Moreover, the correlations between protein expressions and metabolome changes in P. aeruginosa upon Ga(III) treatment were identified and discussed. Our findings thus expand the understanding on the antimicrobial mechanisms of Ga(III) that shed light on enhanced therapeutic strategies. BIOLOGICAL SIGNIFICANCE: Mounting evidence suggest that the efficacy and resistance of clinical antibiotics are closely related to the metabolic homeostasis in bacterial pathogens. Ga(III)-based compounds have been repurposed as antibacterial therapeutic candidates against antibiotics resistant pathogens, and represent a safe and promising treatment for clinical human infections, while more thorough understandings of how bacteria respond to Ga(III) treatment are needed. In the present study, we provide evidences at the proteome level that indicate Ga(III)-induced metabolic perturbations in P. aeruginosa. We identified and discussed the interference of Ga(III) on the expressions and activities of enzymes in the main metabolic pathways in P. aeruginosa. In view of our previous report that the antimicrobial efficacy of Ga(III) could be modulated according to Ga(III)-induced metabolome changes in P. aeruginosa, our current analyses may provide theoretical basis at the proteome level for the development of efficient gallium-based therapies by exploiting bacterial metabolic mechanisms.


Assuntos
Anti-Infecciosos , Gálio , Humanos , Pseudomonas aeruginosa/metabolismo , Compostos Férricos/metabolismo , Compostos Férricos/farmacologia , Proteoma/metabolismo , Proteômica , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Redes e Vias Metabólicas , Bactérias/metabolismo , Gálio/farmacologia , Gálio/química , Gálio/metabolismo , Testes de Sensibilidade Microbiana
9.
J Mol Graph Model ; 124: 108574, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37540937

RESUMO

Hydrogen fluoride (HF) is a highly dangerous and corrosive gas that can cause severe burns and respiratory damage. The density functional theory method (DFT) used to study the interaction between the HF gas and the surface of a carbon nanocone (CNC) doped with gallium atom as a chemical sensor. The results showed that CNC wasn't a good candidate to sense the HF gas and consequently its electrical properties are changed insignificant. To improve the properties of the CNC, several strategies were tried: functionalizing by pyridinol (Pyr) and pyridinol oxide (PyrO), decorated with metals (M = B, Al, and Ga), and doped with element of third group (M = B, Al, and Ga). The obtained data demonstrated that the promising results were obtained by doping the CNC with Ga atom. After full optimization, we achieved one stable configuration between the HF gas and CNC-Ga structure (S15 configuration) with Eads = -19.86 kcal/mol. The electronic properties of the CNC-Ga structure is sensible changed after the HF molecule is adsorbed. According to calculated the energy gap between HOMO and LUMO orbitals of S15 configuration are increased which could be applied a chemical signal. Eventually, one could propose that the CNC-Ga has the ability to act as a Φ-type sensor based on its physical adsorption energy and quick recovery time and doped with gallium atom is a promising strategy.


Assuntos
Gálio , Ácido Fluorídrico , Modelos Moleculares , Gálio/química
10.
Inorg Chem ; 62(33): 13195-13204, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37555777

RESUMO

Three gallium(III)- and thallium(III)-containing polyoxopalladates (POPs) have been synthesized and structurally characterized in the solid state and in solution, namely, the phosphate-capped 12-palladate nanocubes [XPd12O8(PO4)8]13- (X = GaIII, GaPd12P8; X = TlIII, TlPd12P8) and the 23-palladate double-cube [Tl2IIIPd23P14O70(OH)2]20- (Tl2Pd23P14). The cuboid POPs, GaPd12P8 and TlPd12P8, are solution stable as verified by the respective 31P, 71Ga, and 205Tl nuclear magnetic resonance (NMR) spectra. Of prime interest, the spin-spin coupling schemes allowed for an intimate study of the solution behavior of the TlIII-containing POPs via a combination of 31P and 205Tl NMR, including the stoichiometry of the major fragments of Tl2Pd23P14. Moreover, biological studies demonstrated the antitumor and antiviral activity of GaPd12P8 and TlPd12P8, which were validated to be as efficient as cis-platinum against human melanoma and acute promyelocytic leukemia cells. Furthermore, GaPd12P8 and TlPd12P8 exerted inhibitory activity against two herpetic viruses, HSV-2 and HCMV, in a dose-response manner.


Assuntos
Gálio , Tálio , Humanos , Tálio/química , Gálio/farmacologia , Gálio/química , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética
11.
Nanotechnology ; 34(37)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37311438

RESUMO

The self-assembly of heteroepitaxial GaN nanowires using either molecular beam epitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE) mostly results in wafer-scale ensembles with ultrahigh (>10µm-2) or ultralow (<1µm-2) densities, respectively. A simple means to tune the density of well-developed nanowire ensembles between these two extremes is generally lacking. Here, we examine the self-assembly of SiNxpatches on TiN(111) substrates which are eventually acting as seeds for the growth of GaN nanowires. We first found that if prepared by reactive sputtering, the TiN surface is characterized by {100} facets for which the GaN incubation time is extremely long. Fast GaN nucleation is only obtained after deposition of a sub-monolayer of SiNxatoms prior to the GaN growth. By varying the amount of pre-deposited SiNx, the GaN nanowire density could be tuned by three orders of magnitude with excellent uniformity over the entire wafer, bridging the density regimes conventionally attainable by direct self-assembly with MBE or MOVPE. The analysis of the nanowire morphology agrees with a nucleation of the GaN nanowires on nanometric SiNxpatches. The photoluminescence analysis of single freestanding GaN nanowires reveals a band edge luminescence dominated by excitonic transitions that are broad and blue shifted compared to bulk GaN, an effect that is related to the small nanowire diameter and to the presence of a thick native oxide. The approach developed here can be principally used for tuning the density of most III-V semiconductors nucleus grown on inert surfaces like 2D materials.


Assuntos
Gálio , Nanofios , Nanofios/química , Estanho , Gálio/química , Luminescência , Óxidos
12.
Inorg Chem ; 62(19): 7503-7514, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140938

RESUMO

Stereoselective total synthesis of several analogues of piscibactin (Pcb), the siderophore produced by different pathogenic Gram-negative bacteria, was performed. The acid-sensitive α-methylthiazoline moiety was replaced by a more stable thiazole ring, differing in the configuration of the OH group at the C-13 position. The ability of these Pcb analogues to form complexes with Ga3+ as a mimic of Fe3+ showed that the configuration of the hydroxyl group at C-13 as 13S is crucial for the chelation of Ga3+ to preserve the metal coordination, while the presence of a thiazole ring instead of the α-methylthiazoline moiety does not affect such coordination. A complete 1H and 13C NMR chemical shift assignment of the diastereoisomer mixtures around C9/C10 was done for diagnostic stereochemical disposition. Additionally, density functional theory calculations were performed not only for confirming the stereochemistry of the Ga3+ complex among the six possible diastereoisomers but also for deducing the ability of these to form octahedral coordination spheres with gallium. Finally, the lack of antimicrobial activity of Pcb and Pcb thiazole analogue Ga3+ complexes against Vibrio anguillarum agrees with one of the roles of siderophores in protecting pathogens from metal ion toxicity. The efficient metal coordination shown by this scaffold suggests its possible use as a starting point for the design of new chelating agents or vectors for the development of new antibacterials that exploit the "Trojan horse" strategy using the microbial iron uptake mechanisms. The results obtained will be of great help in the development of biotechnological applications for these types of compounds.


Assuntos
Gálio , Sideróforos , Sideróforos/química , Teoria da Densidade Funcional , Ferro/química , Quelantes , Gálio/química , Tiazóis
13.
Comput Biol Med ; 161: 106934, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257404

RESUMO

Similar to the more well-known carbon nanotubes, gallium nitride nanotubes (GaNNT) are among the materials that scientists have found to be extremely helpful in transporting drugs and to provide significant potential for multi-modal medical therapies. Here, the potential of Cu, Ag, and Au-doped GaNNT for smart delivery of the anticancer medication hydroxyurea (HU) was extensively investigated employing quantum chemical analysis and density functional theory (DFT) computation at the B3LYP-GD3BJ/def2-SVP level of theory. The systematic approach used in this study entails examining the exo (outside)-and endo (inside) loading of HU utilizing the investigated nanotubes in order to understand the adsorption, sensing processes, bonding types, and thermodynamic properties. Results of the HOMO-LUMO studies show that metal-doped GaNNTs with the hydroxyurea (HU) at the endo - interaction of the drug of the nanotube produced more reduced energy gaps (0.911-2.039 eV) compared with metal-doped GaNNTs complexes at the outside - interaction of the drug on the nanotube (2.25-3.22 eV) and as such reveal their suitability for use as drug delivery materials. As observed in the endo-interaction of HU adsorptions in the tubes, HU_endo_Au@GaNNT possessed the highest adsorption energy values of -118.716 kcal/mol which shows the most chemisorption between the surfaces and the adsorbate while for HU_exo_Ag@GaNNT is -97.431 kcal/mol for the highest exo-interactions. These results suggest that HU drug interacted inside the Ag, Au, and Cu doped GaNNT will be very proficient as a carrier of the HU drug into bio systems. These results are along with visual studies of weak interactions, thermodynamics, sensor, and drug release mechanisms suggest strongly the endo-encapsulation of HU as the best mode for smart drug delivery.


Assuntos
Antineoplásicos , Gálio , Nanotubos de Carbono , Hidroxiureia , Nanotubos de Carbono/química , Gálio/química
14.
Colloids Surf B Biointerfaces ; 226: 113294, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37043951

RESUMO

A variety of therapeutic approaches using liquid metal (LM) have been intensively investigated, due to its unique physico-chemical properties that include high surface tension, fluidity, shape deformability, thermal conductivity, and electrical conductivity. Among a series of LMs, the relatively lower toxicity and minimal volatility of gallium (Ga)-based LMs (GaLMs) enables their usage in a series of potential biomedical applications, especially implantable platforms, to treat multiple diseases. In addition, the highly efficient conversion of light energy into thermal or chemical energy via GaLMs has led to recent developments in photothermal and photodynamic applications for anticancer treatments. As attractive photothermal agents or photosensitizers, a systematic interpretation of the structural characteristics and photo-responsive behaviors of GaLMs is necessary to develop effective anticancer engineering applications. Therefore, the aim of this review is to provide a comprehensive summary of currently suggested GaLM-mediated photo-therapeutic cancer treatments. In particular, the review summarizes (1) surface coating techniques to form stable and multifunctional GaLM particulates, (2) currently investigated GaLM-mediated photothermal and photodynamic anticancer therapies, (3) synergistic efficacies with the aid of additional interventions, and (4) 3D composite gels embedded with GaLMs particles, to convey the potential technological advances of LM in this field.


Assuntos
Anti-Infecciosos , Gálio , Fotoquimioterapia , Gálio/farmacologia , Gálio/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Penicilinas , Anti-Infecciosos/uso terapêutico , Expectorantes
15.
Chempluschem ; 88(1): e202200413, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36680306

RESUMO

A series of gallium(III) amide corroles including meso-5,15-bis(pentafluorophenyl)-10-(4-Pyridinamide-phenyl)corrole gallium (III) (1-Ga), meso-5,15-bis(pentafluorophenyl)-10-(4-Furamide-phenyl)corrole gallium(III) (2-Ga) and meso-5,15-bis(pentafluorophenyl)-10-(4-Thiophenamide-phenyl)corrole gallium(III) (3-Ga) were synthesized. The interaction of these complexes with DNA and their photodynamic antitumor activities have been studied. UV spectra titration showed that these gallium(III) corroles interact with calf thymus DNA (CT-DNA) through an external binding mode. All three gallium(III) corroles can effectively generate singlet oxygen under illumination and have good photostability. Among the three gallium(III) corroles, 2-Ga exhibited excellent photodynamic antitumor activity against the tested tumor cell lines under light irradiation (625±2 nm, 0.3 mW/cm2 , 1.08 J/cm2 ). The best phototoxicity was observed by 2-Ga against HepG2 cells (IC50 =6.3±0.9), which is even better than temoporfin (IC50 =8.4±1.8). It could block HepG2 cells in the sub-G0 phase and effectively induce apoptosis of HepG2 cells under 625 nm light irradiation.


Assuntos
Gálio , Neoplasias , Porfirinas , Gálio/farmacologia , Gálio/química , Porfirinas/química , DNA/química , Linhagem Celular Tumoral
16.
Nanotechnology ; 34(14)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36595322

RESUMO

Self-assembled quantum dots (QDs) based on III-V semiconductors have excellent properties for applications in quantum optics. However, the presence of a 2D wetting layer (WL) which forms during the Stranski-Krastanov growth of QDs can limit their performance. Here, we investigate WL formation during QD growth by the droplet epitaxy technique. We use a combination of photoluminescence excitation spectroscopy, lifetime measurements, and transmission electron microscopy to identify the presence of an InGaAs WL in these droplet epitaxy QDs, even in the absence of distinguishable WL luminescence. We observe that increasing the amount of Ga deposited on a GaAs (100) surface prior to the growth of InGaAs QDs leads to a significant reduction in the emission wavelength of the WL to the point where it can no longer be distinguished from the GaAs acceptor peak emission in photoluminescence measurements. However increasing the amount of Ga deposited does not suppress the formation of a WL under the growth conditions used here.


Assuntos
Arsenicais , Gálio , Pontos Quânticos , Arsenicais/química , Luminescência , Gálio/química
17.
Int J Nanomedicine ; 18: 225-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36660337

RESUMO

Background: Gallium (III) metal-organic complexes have been shown to have the ability to inhibit tumor growth, but the poor water solubility of many of the complexes precludes further application. The use of materials with high biocompatibility as drug delivery carriers for metal-organic complexes to enhance the bioavailability of the drug is a feasible approach. Methods: Here, we modified the ligands of gallium 8-hydroxyquinolinate complex with good clinical anticancer activity by replacing the 8-hydroxyquinoline ligands with 5-bromo-8-hydroxyquinoline (HBrQ), and the resulting Ga(III) + HBrQ complex had poor water solubility. Two biocompatible materials, bovine serum albumin (BSA) and graphene oxide (GO), were used to synthesize the corresponding Ga(III) + HBrQ complex nanoparticles (NPs) BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs in different ways to enhance the drug delivery of the metal complex. Results: Both of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs can maintain stable existence in different solution states. In vitro cytotoxicity test showed that two nanomedicines had excellent anti-proliferation effect on HCT116 cells, which shown higher level of intracellular ROS and apoptosis ratio than that of cisplatin and oxaliplatin. In addition, the superior emissive properties of BSA/Ga/HBrQ NPs and GO/Ga/HBrQ NPs allow their use for in vivo imaging showing highly effective therapy in HCT116 tumor-bearing mouse models. Conclusion: The use of biocompatible materials for the preparation of NPs against poorly biocompatible metal-organic complexes to construct drug delivery systems is a promising strategy that can further improve drug delivery and therapeutic efficacy.


Assuntos
Antineoplásicos , Portadores de Fármacos , Gálio , Grafite , Nanopartículas Metálicas , Oxiquinolina , Animais , Humanos , Camundongos , Materiais Biocompatíveis , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Gálio/química , Grafite/química , Células HCT116 , Nanopartículas Metálicas/análise , Nanopartículas/análise , Oxiquinolina/química , Tamanho da Partícula , Soroalbumina Bovina/farmacologia , Água , Antineoplásicos/síntese química , Antineoplásicos/química
18.
J Inorg Biochem ; 240: 112091, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527994

RESUMO

Gallium and indium octahedral complexes with isoniazid derivative ligands were successfully prepared. The ligands, isonicotinoyl benzoylacetone (H2L1) and 4-chlorobenzoylacetone isonicotinoyl hydrazone (H2L2), and their respective coordination compounds with gallium and indium [GaL1(HL1)] (GaL1), [GaL2(HL2)] (GaL2), [InL1(HL1)] (InL1) and [InL2(HL2)] (InL2) were investigated by NMR, ESI-MS, UV-Vis, IR, single-crystal X-ray diffraction and elemental analysis. In vitro interaction studies with human serum albumin (HSA) evidenced a moderate affinity of all complexes with HSA through spontaneous hydrophobic interactions. The greatest suppression of HSA fluorescence was caused by GaL2 and InL2, which was associated to the higher lipophilicity of H2L2. In vitro interaction studies with CT-DNA indicated weak interactions of the biomolecule with all complexes. Cytotoxicity assays with MCF-7 (breast carcinoma), PC-3 (prostate carcinoma) and RWPE-1 (healthy human prostate epithelial) cell lines showed that complexes with H2L2 are more active and selective against MCF-7, with the greatest cytotoxicity observed for InL2 (IC50 = 10.34 ± 1.69 µM). H2L1 and H2L2 were labelled with gallium-67, and it was verified that 67GaL2 has a greater lipophilicity than 67GaL1, as well as higher stability in human serum or in the presence of apo-transferrin. Cellular uptake assays with 67GaL1 and 67GaL2 evidenced that the H2L2-containing radiocomplex has a higher accumulation in MCF-7 and PC-3 cells than the non-halogenated congener 67GaL1. The anti-Mycobacterium tuberculosis assays revealed that both ligands and metal complexes are potent growth inhibitors, with MIC90 (µg mL-1) values observed from 0.419 ± 0.05 to 1.378 ± 0.21.


Assuntos
Antineoplásicos , Complexos de Coordenação , Gálio , Mycobacterium tuberculosis , Neoplasias , Tuberculose , Masculino , Humanos , Isoniazida/farmacologia , Índio/farmacologia , Gálio/farmacologia , Gálio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química
19.
Chem Commun (Camb) ; 59(3): 260-269, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36510729

RESUMO

Photodetectors hold great application potential in many fields such as image sensing, night vision, infrared communication and health monitoring. To date, commercial photodetectors mainly rely on inorganic semiconductors, e.g., monocrystalline silicon, germanium, and indium selenide/gallium with complex and costly fabrication, which are hardly compatible with wearable electronics. In contrast, organic conjugated materials provide great superiority in flexibility and stretchability. In this Highlight, the unique properties of organic and quantum dot photodetectors were firstly discussed to reveal the great complementarity of the two technologies. Subsequently, the recent advance of organic/quantum dot hybrid photodetectors was outlined to highlight their great potential in developing broadband and high-performance photodetectors. Moreover, the multiple functions (e.g., dual-band detection and upconversion detection) of hybrid photodetectors were highlighted for their promising application in image sensing and infrared detection. Lastly, we present a forword-looking discussion on the challenges and our insights for the further advancement of hybrid photodetectors. This work may spark enormous research attention in organic/quantum dot electronics and advance the commercial applications.


Assuntos
Gálio , Pontos Quânticos , Semicondutores , Eletrônica , Gálio/química , Índio/química
20.
Adv Mater ; 35(11): e2208227, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36321332

RESUMO

Actively triggerable materials, which break down upon introduction of an exogenous stimulus, enable precise control over the lifetime of biomedical technologies, as well as adaptation to unforeseen circumstances, such as changes to an established treatment plan. Yet, most actively triggerable materials are low-strength polymers and hydrogels with limited long-term durability. By contrast, metals possess advantageous functional properties, including high mechanical strength and conductivity, that are desirable across several applications within biomedicine. To realize actively triggerable metals, a mechanism called liquid metal embrittlement is leveraged, in which certain liquid metals penetrate the grain boundaries of certain solid metals and cause them to dramatically weaken or disintegrate. In this work, it is demonstrated that eutectic gallium indium (EGaIn), a biocompatible alloy of gallium, can be formulated to reproducibly trigger the breakdown of aluminum within different physiologically relevant environments. The breakdown behavior of aluminum after triggering can further be readily controlled by manipulating its grain structure. Finally, three possible use cases of biomedical devices constructed from actively triggerable metals are demonstrated.


Assuntos
Alumínio , Gálio , Ligas , Gálio/química , Índio/química , Condutividade Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...